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The issue with supervised learning

Question: Why are large human-labeled datasets important?

=⇒ The number of trainable parameters of recent models is constantly
increasing and thus larger training sets are mandatory to avoid overfitting.

Drawbacks of supervised learning:

1 Labeling datasets is expensive, tedious and slow.

2 Manual labeling is not scalable to the amount of data available today.

3 It could lead to biased models towards the considered problem.
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The rise of self-supervised learning

Self-supervised learning

SSL relies on supervisory signals generated from the data itself. The principle is to
train the model on a pretext task and use the learned representations for a
different downstream task (through transfer learning for instance).

Different self-supervised strategies:

• Contrastive tasks: predicting hidden parts of the signal, maximizing mutual
information between representations sampled from the same temporal
context, ...

• ”Autoencoder” tasks: predicting transformations that can be directly
derived from the input signal
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Our objective

Supervised learning is a bottleneck for building intelligent speaker and language
recognition models because of the lack of large amount of labeled samples.

=⇒ The objective is to create an efficient self-supervised model designed for
speaker and language recognition tasks.
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SSL for audio: CPC [van den Oord et al., 2019]

Figure: Contrastive Predictive Coding (CPC) model architecture.
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SSL for audio: LIM/GIM [Ravanelli and Bengio, 2019a]

Figure: Local Info Max (LIM) model architecture.

Different objective functions to maximize mutual information:

• Binary crossentropy

• Noise-Contrastive Estimation (NCE) [Gutmann and arinen, 2010]

• Mutual Information Neural Estimation (MINE) [Belghazi et al., 2018]
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SSL for audio: wav2vec 2.0 [Baevski et al., 2020b]

Figure: wav2vec 2.0 model architecture.

• Based on Transformers
[Vaswani et al., 2017] similarly
to BERT [Devlin et al., 2019]

• Specifically designed for speech
recognition but extremely
data-efficient

• Previous versions:
• wav2vec

[Schneider et al., 2019]
• vq-wav2vec

[Baevski et al., 2020a]
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SSL for audio: PASE/PASE+ [Ravanelli et al., 2020]

Figure: Problem Agnostic Speech Encoder
(PASE+) model architecture.

• Encoder based on SincNet
[Ravanelli and Bengio, 2019b]

• Produce generalist representations

• Relying on techniques introduced
previously: LIM, GIM, CPC

• Use regressors modules acting as
regular autoencoders
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The connection with mutual information

Most SSL methods are contrastive and aim at maximizing mutual information
between representations sampled from the same temporal context.

MI (z1, z2) =

∫
z1

∫
z2

p (z1, z2) log

(
p (z1, z2)

p (z1) p (z2)

)
dz1dz2 (3)

In the case of CPC, the optimal objective function can be written as Eq. 4.

Lopt
NCE = −E

X
log

 p(xt+k |ct)
p(xt+k )

p(xt+k |ct)
p(xt+k )

+
∑

xj∈Xneg

p(xj |ct)
p(xj )

 ≥ −MI (xt+k , ct) + log(N) (4)

Thus, we have MI (xt+k , ct) ≥ log(N)− Lopt
NCE.
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Objective functions to maximize mutual information

Figure: Evolution of different loss functions aiming at maximizing mutual information.
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Implementation of the framework

Throughout the semester, my work was dedicated to create a Python library to
train and evaluate self-supervised models for speaker and language recognition 1.

1 Implement all models presented previously with TensorFlow.

2 Handle audio datasets by caching data.

3 Evaluation on speaker recognition, speaker verification, language recognition
and data-efficiency.

4 Modular configuration files.

1https://github.com/theolepage/ssl-for-slr
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Vectorized implementation of CPC loss

1 @t f . f u n c t i o n
2 de f c p c l o s s ( n b t im e s t e p s t o p r e d i c t , p r e d i c t i o n s , X fu tu r e encoded ) :
3 # Shape : ( b a t c h s i z e , n b t im e s t e p s t o p r e d i c t , encoded dim )
4
5 b a t c h s i z e = t f . shape ( p r e d i c t i o n s ) [ 0 ]
6
7 l o s s e s = t f . z e r o s ( ( b a t c h s i z e ) )
8
9 f o r t i n range ( n b t im e s t e p s t o p r e d i c t ) :

10 dot = t f . l i n a l g . matmul ( X fu tu r e encoded [ : , t , : ] ,
11 p r e d i c t i o n s [ : , t , : ] ,
12 t r a n s p o s e b=True )
13
14 # Determine l o s s
15 l o g s o f tmax do t = t f . nn . l o g s o f tmax ( dot , a x i s =0)
16 d i ag = t f . l i n a l g . t e n s o r d i a g p a r t ( l o g s o f tmax do t )
17 l o s s e s += d iag
18
19 l o s s e s /= t f . c a s t ( n b t im e s t e p s t o p r e d i c t , dtype=t f . f l o a t 3 2 )
20
21 # Compute the ave rage l o s s and accu racy a c r o s s a l l ba t che s
22 l o s s = t f . math . reduce mean ( l o s s e s )
23
24 r e t u r n −l o s s

Listing 1: TensorFlow implementation of CPC loss
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Improvements of CPC base model (1)

We introduced several improvements to CPC base model (cpc-spk-1):

• Sinc-based encoder [Ravanelli and Bengio, 2019b] (cpc-spk-2)
Intuition: capture voice characteristics with band pass filters.

• Bidirectional GRU (cpc-spk-3)
Intuition: learn to predict past frames with future frames.

• Sinc-based encoder + Data-augmentation (cpc-spk-4)
Intuition: use data-augmentation techniques to learn more generalist
representations.
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Improvements of CPC base model (2)

Figure: CPC model architecture with our improvements
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Experimental protocol (1)

We first train models in a self-supervised way (pretext task) before training a
classifier on top of their representations (downstream task).

Figure: Overview of our training and evaluation framework
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Experimental protocol (2)

Datasets:

• Speaker recognition: LibriSpeech [Vassil Panayotov and Khudanpur, 2015]

• Language recognition: VoxLingua107 [Valk and Alumäe, 2020]

Setup:

• We use frames of 1.28 second (20480 values at 16kHz)

• Batch size of 64

• Adam optimizer with a learning rate of 1× 10−4

• L2 weight normalization factor of 1× 10−4

• Each training stops after 5 epochs without a better validation loss

• 2x NVIDIA TITAN X GPU
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Results on speaker classification

Model Accuracy # of params Training time

Random initialization 1.00% 6,518M 3 hours 50 min
Supervised baseline 83.92% 6,518M 3 hours 20 min
cpc-spk-1 (Base model) 77.90% 6,518M 1 hour 30 min
cpc-spk-2 (Sinc-encoder) 72.29% 6,518M 1 hour 30 min
cpc-spk-3 (Bidirectional GRU) 86.23% 7,175M 2 hours 40 min
cpc-spk-4 (Data-augmentation) 55.10% 6,518M 1 hour 10 min

Table: Linear classification of 2338 speakers from LibriSpeech.

Model Accuracy # of params Training time

Random initialization 2.00% 7,445M 2 hours 50 min
Supervised baseline 74.50% 7,445M 4 hours 30 min
cpc-spk-1 (Base model) 81.58% 7,445M 1 hour
cpc-spk-2 (Sinc-encoder) 79.51% 7,445M 1 hour
cpc-spk-3 (Bidirectional GRU) 87.78% 8,168M 1 hour 30 min
cpc-spk-4 (Data-augmentation) 61.09% 7,445M 1 hour 20 min

Table: MLP classification of 2338 speakers from LibriSpeech.
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The issue faced with language recognition

(a) Speaker embeddings (b) Language embeddings

Figure: PCA on embeddings provided by the self-supervised model

=⇒ Our model struggles to capture language features as it is easier for the
contrastive task to rely on speaker identity.
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Is our approach data-efficient?

Figure: Data-efficient speaker evaluation of our best model.
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Perspectives and conclusion

Future directions:

• Find a solution for language recognition.

• Train all models that have been implemented.

• Improve our experimental setup by evaluating on larger datasets (NIST SRE)
and comparing our results with other self-supervised models.

=⇒ I am convinced that self-supervised learning is the key to build more
intelligent speaker and language recognition systems.
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Questions & Answers

Do you have any questions?
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