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Learning embeddings for speaker verification

Objective: Learn embeddings that have small intra-speaker and large inter-speaker distances.
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Figure 1. Overview of the use of speaker embeddings for speaker verification systems.
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State-of-the-art methods are based on deep learning models [1, 2], inherently dependent on some kind of
human supervision, as they are trained on massive amounts of labeled data.

[1] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudan- pur, “X-Vectors: Robust DNN Embeddings for Speaker Recognition,” in ICASSP, 2018.
[2] J. S. Chung, J. Huh, and S. Mun, “Delving into VoxCeleb: Environment Invariant Speaker Recognition,” in Odyssey, 2020.



Motivation behind self-supervised learning

Large human-labeled datasets are important for the development of deep learning as the capacity of
recent models is constantly increasing.

Drawbacks of supervised learning:

1. Labeling datasets is expensive, tedious and slow.
2.  Manual labeling is not scalable to the amount of data available today.
3. It could lead to biased models towards the considered problem.

=> Supervised learning is a bottleneck for building intelligent speaker verification systems.



Contrastive learning and limitations of existing approaches

Contrastive learning [1, 2] learn embeddings directly from raw audio by assuming that each utterance in
the mini-batch Z € RY*P, and its augmented copy Z’' € RV*P, belongs to a unique speaker.

N

1 Z log exp (z; - z,/7)

LinfoNCE = — N
N = ijl exp (z; - z;/7)

Problem: They rely on a costly negative sampling process to avoid a collapse (non-informative
embeddings). Alternative methods rely on complex architectures such as:

a "momentum” encoder (MoCo [3]);

a stop gradient operation (SimSiam [4]);
vector quantization (SwAV [5]);
clustering (DeepCluster [6]).

(I Ry Wy

[1]1A. van den Oord, Y. Li, and O. Vinyals, “Representation Learning with Contrastive Predictive Coding,” arXiv preprint arXiv:1807.03748, 2019.
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[4] X. Chen and K. He, “Exploring Simple Siamese Representation Learning,” in CVPR, 2021.
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Maximizing information with Variance-Invariance-Covariance Regularization [1]

Lyicreg = AS(Z,Z') + p(v(Z) +v(Z')) + v (c(Z) + c(Z)))

e Variance
Objective: Enforce the variance to reach 1 along the D dimensions.

Intuition: Avoid the collapse problem.

v(Z) = %imax (O, 1— \/Var(zj))

j=1

[1] A. Bardes, J. Ponce, and Y. LeCun, “VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning,” arXiv preprint arXiv:2105.04906, 2021.



Maximizing information with Variance-Invariance-Covariance Regularization [1]

Lyicreg = AS(Z,Z') + p(v(Z) +v(Z')) + v (c(Z) + c(Z)))

Objective: Reduce the [, distance between two augmented copies.

Intuition: Learn channel invariant representations.
N
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[1] A. Bardes, J. Ponce, and Y. LeCun, “VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning,” arXiv preprint arXiv:2105.04906, 2021.



Maximizing information with Variance-Invariance-Covariance Regularization [1]

Lyicreg = AS(Z,Z') + p(v(Z) +v(Z')) +v(c(Z) + c(Z)))

e Covariance

Objective: Make the off-diagonal coefficients of the covariance matrix to be close to 0.

Intuition: Spread information across the dimensions.

c(2) = 5 Y [C@),

i7#]

[1] A. Bardes, J. Ponce, and Y. LeCun, “VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning,” arXiv preprint arXiv:2105.04906, 2021.



Overview of our self-supervised training framework (1)

Shared architecture and weights
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Figure 2. Overview of our self-supervised training framework.

e X and X’ are input batches (composed of different non-overlapping frames from the same utterances)
e Y andY’ arereferred to as representations
e ZandZ are referred to as embeddings
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Overview of our self-supervised training framework (2)

1. Self-supervised pre-training (100% samples - 0% labels)

2. Evaluation on speaker verification (2 utterances without labels)

Training X, X' —>» Encoder Y. Y —)} Projector —>» Z,Z'

i same weights

Figure 3. Overview of the forward pass of the training and evaluation steps.
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Combining contrastive learning and information maximization

Optimize the model jointly with the two objective functions by:

Using both losses at different stages of the neural network;

Lz‘:omp — LVICReg (Y7 Y/) + EIDfONCE (Z, Z/>
L: . = Lronce (Y, YY) + Lyvicreg (Z, Z))

comp

Using information maximization as a regularization term.

ﬁig = Lintonce (Y, Y') + a Lyicreg (Y, Y')

ﬁrzeg = Lintonce (Z,Z") + a Lyicreg (Z,Z')
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Experimental setup

Datasets and feature extraction

(@]

o O O

VoxCeleb1 dev and test sets

Speaker labels are discarded

2 seconds audio chunks

40-dimensional log-mel spectrogram input
features

Data augmentation

O

O

Music, speech and babble background noises
from the MUSAN corpus

Reverberation from the Simulated Room
Impulse Response Database

Model architecture and training

o

o O O O

Encoder: Thin-ResNet34
Projector: 3-layer MLP

500 epochs with Adam optimizer
Batch size of 256

2x NVIDIA Titan X (Pascal) 12 GB

Evaluation protocol

o

o

o

Scoring with cosine similarity
Equal Error Rate (EER)

minimum Detection Cost Function
(minDCF) with p=0.01
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The role of variance, invariance and covariance coupled with data augmentation

> v EER minDCF
e Convergence is determined by the weight of the T 0 2400 09964
variance (4) component relatively to the other terms. 1 05 01 1571 08554
1 1 004 1114  0.6843
1 1 01 11.87 0.7101
e |nvariance (M) is fundamental to learn representations Table 1. SV results with different scaling
that have small intra-speaker distances. factors for VICReg loss components.  A:

Invariance, p: Variance, v: Covariance.

Data augmentation is the key to achieve this objective
as applying multiple transformations leads to a 62.7%

relative improvement of the EER. Method EER minDCF
No augmentation 29.87 0.8833
Musan 21.22 0.8388
. : RIR 2228  0.8525
e Covariance (v) is also necessary to produce NS A RIR 114 0.6843
meaningful representations (53.6% improvement of the
EER between the 15t and 3" configuration). Table 2. SV results with different data

augmentation strategies.
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Self-supervised results

Method Loss EER minDCF
NPC [21] Cross-entropy  15.54 0.8700
SimCLR [6] InfoNCE 9.87 0.6760
LinfoNCE 10.42 0.6276
Ours LBarlowTwins 13.46 0.8473
LVICReg 9.25 0.6432
E},o,,,p 13.14 0.6950
Ours .Cfomp 8.47 0.6400
(Section 2.3) Ex,g 9.09 0.6894
il 10.38  0.6913

Table 3. Final results on SV (VoxCeleb1 test).

Our method, VICReg, achieves 9.25% EER and
outperforms the contrastive baseline, InfoNCE,
and the other unsupervised approaches.

We reach the best performance with £2

comp

objective function as it achieves 8.47% EER.

L2 = Lintonce (Y, Y') + Lyicreg (Z,Z)

comp

Combining information maximization and
contrastive learning at different stages
of the model is very effective.
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Label-efficient evaluation

Use a limited amount of annotated
utterances to improve the performance
of our method:

1. Train a linear classifier on top of
the frozen self-supervised
representations;

2. Fine-tune the whole pre-trained
neural network.
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Figure 4. SV results with different percentage of labeled data used during training.

->  Fine-tuning with only 2% of labeled data is sufficient to outperform the supervised baseline.
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Conclusions

=> Information maximization methods allow learning robust speaker representations
without contrastive samples.

=>  Our self-supervised training framework can reach better results when combining
contrastive learning and information maximization.

=>  Our method outperforms its supervised counterpart when fine-tuned with only 2% of
labeled utterances, which is a step toward label-efficient speaker verification systems.
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