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Learning embeddings for speaker verification

Objective: Learn embeddings that have small intra-speaker and large inter-speaker distances.
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Figure 1. Learning speaker embeddings space for speaker verification systems.
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State-of-the-art methods are based on deep learning models [1, 2], inherently dependent on some kind of
human supervision, as they are trained on massive amounts of labeled data.

[1] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudan- pur, “X-Vectors: Robust DNN Embeddings for Speaker Recognition,” in ICASSP, 2018.
[2] J. S. Chung, J. Huh, and S. Mun, “Delving into VoxCeleb: Environment Invariant Speaker Recognition,” in Odyssey, 2020.



Self-supervised learning with a contrastive loss

Large human-labeled datasets are important for the development of deep learning as the capacity of
recent models is constantly increasing.

— However, labeling datasets is expensive, tedious, slow and not scalable to the data available online.

Self-supervised contrastive learning [1, 2, 3] learn embeddings directly from raw audio by assuming
that each utterance in the mini-batch Z € RV*?, and its augmented copy Z' € R¥*? belongs to a
unique speaker.

N

1 Z log exp (z; - z,/7)

LinfoNCE = — ~
i=1 Zj:l exp (z; - 2;/7)

N

[1]1A. van den Oord, Y. Li, and O. Vinyals, “Representation Learning with Contrastive Predictive Coding,” arXiv preprint arXiv:1807.03748, 2019.
[2] H. Zhang, Y. Zou, and H. Wang, “Contrastive Self-Supervised Learning for Text-Independent Speaker Verification,” in ICASSP, 2021.
[3] W. Xia, C. Zhang, C. Weng, M. Yu, and D. Yu, “Self-supervised Text-independent Speaker Verification using Prototypical Momentum Contrastive Learning,” in ICASSP, 2021.



Margin-based approaches for verification tasks

In supervised settings, margins have been successfully applied to the Softmax classification loss for face
and speaker recognition [1, 2] with the aim of producing more discriminative embeddings.
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Figure 2. Overview of the different margin-based loss functions. Decision margins are from Figure 5 of [5].

[1]Y. Liu, L. He, and J. Liu, “Large Margin Softmax Loss for Speaker Verification,” in Interspeech, 2019.

[2] Y.-Q. Yu, L. Fan, and W.-J. Li, “Ensemble additive margin softmax for speaker verification,” in ICASSP, 2019.

[3] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj and L. Song, “SphereFace: Deep Hypersphere Embedding for Face Recognition,” in CVPR, 2017.

[4] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and W. Liu, “Cosface: Large margin cosine loss for deep face recognition,” in CVPR, 2018.
[5] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular margin loss for deep face recognition,” in CVPR, 2019.



Symmetric contrastive loss formulation

Normalized Temperature-scaled Cross Entropy loss (NT-Xent)

— N positive pairs have N — 1 negatives
iel={1...N}

Z ,Z/) _ co8(Ou,w)/T
LNT-Xent = —— Z log : lu,v) =e

aEI (zi? Z;)

'LEI
Symmetric NT-Xent loss (SNT-Xent) [1] ‘
— 2N positive pairs have 2(N — 1) negatives iel= {1...2N}

4(7) is the index of augmented version of Z;

1 ( (=i 2j0)
LsNT-Xemt = —5 »_ log 5 o £z 20) AG) = 1\ {4}

[1] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A Simple Framework for Contrastive Learning of Visual Representations,” in ICML, 2020.



Introducing Additive Margins in the contrastive loss

A() = 1\ {i,j(0)}

1 A CZ10),
LINT-Xent-AM = — 57 log : 0T (0 v) = e(eosOuy)—m)/7
2 0+ (26 2j6) + Laciy € (265 24) (u,v) =e

/- (u7 V) — ecos(eu,v)/'r

Additive Margin (CosFace) [1]

e Introduce m > 0 in cosine space to force the cosine similarity of positive pairs to be above
a specific threshold and thus improve speaker separability.

e Decision boundary: ©s (0z,.z,) —m > cos (0z,.2,)

[1]1 H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and W. Liu, “Cosface: Large margin cosine loss for deep face recognition,” in CVPR, 2018.



Introducing Additive Angular Margins in the contrastive loss

A() = 1\ {i,j(0)}

1 0 (24, 250))
LSNT Xent-AAM = — 577 log . /T (u.v) = ec0sOuvtm)/7
2N Z a (zi7 zj(i)) + ZaeA(z’) (= (24, 24) (u,v)

/- (11, V) _ ecos(Ou,v)/'r

Additive Angular Margin (ArcFace) [1]

e Introduce m > 0 in angle space which provides the exact correspondence to the geodesic
distance.

e Decision boundary: cos (‘9za,zp + m) > cos (02, 2,)

[1] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular margin loss for deep face recognition,” in CVPR, 2019.



Overview of our self-supervised training framework
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Figure 3. Overview of our self-supervised training framework.



Experimental setup

e Datasets and feature extraction

o  Training on VoxCeleb1 dev set [1]

o  Evaluation on VoxCeleb1 test set

o  Speaker labels are discarded

o 2 seconds audio chunks

o  40-dimensional log-mel spectrogram input

features

e Data augmentation
o  Music, speech and babble background
noises from the MUSAN [2]
o  Reverberation from the Simulated Room
Impulse Response Database [3]

Model architecture and training
o  Encoder: Thin-ResNet34 / ResNet34
Projector: 2-layer MLP
By default 7 is set to 0.2
Epochs: 200 / 300
Optimizer: Adam (no weight decay)
Batch size: 256
2x NVIDIA Titan X (Pascal) 12 GB

0O O O O O O

Evaluation protocol
o Scoring with cosine similarity
o  Equal Error Rate (EER)
o minimum Detection Cost Function
(minDCF) with p=0.01

[11A. Nagrani, J. S. Chung, and A. Zisserman, “VoxCeleb: A Large-Scale Speaker Identification Dataset,” in Interspeech, 2017.
[2] D. Snyder, G. Chen, and D. Povey, “MUSAN: A Music, Speech, and Noise Corpus,” arXiv preprint arXiv:1510.08484, 2015.
[3] T. Ko, V. Peddinti, D. Povey, M. L. Seltzer, and S. Khudanpur, “A study on data augmentation of reverberant speech for robust speech recognition,” in ICASSP, 2017.
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Effect of the symmetric loss and the margins

Using a symmetric contrastive loss improves the EER
from 9.45% to 9.35%.

Choosing the right margin factor is fundamental:
trade-off between discriminative power and learning
task complexity. Learning the margin value jointly with
the model does not improve the performance.

The best result is obtained with SNT-Xent-AAM which
achieves 8.98% EER.

The improvement does not translate on the minDCF as
the model is trained to reduce the number of false
positives and false negatives indistinctly.

Method EER(%) minDCF
Baseline ( 945 0.7094 |
Baseline w/o Data-augmentation 28.17 0.8656
Baseline w/o Projector 13.55 0.8435
Baseline w/ SNT-Xent (9.35 0.6647 |

Table 1. The effect of training components on
SV results.

Loss Margin  EER(%) minDCF
SNT-Xent - 9.35 0.6647
0.1 9.30 0.7610

0.2 9.01 0.6907
0.3 8.93 0.6909

SHTXentAM 04 [8.70  0.6873)
0.5 8.87 0.7182
Learnable 9.26 0.7093
0.05 8.92 0.7006

0.1 ( 8.98 0.6742]
SNT-Xent-AAM 0.2 9.22 0.6846
0.3 Exploding gradients

Learnable 9.18 0.6717

Table 2. SV results when introducing margins in
the self-supervised contrastive loss.
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Study of the distribution of positive and negative scores

Scores distribution
. . SNT-Xent SNT-Xent-AM (m=0.4)
e The spread between the distribution of
positive and negative scores is further 1000
when using SNT-Xent-AM (m=0.4). .
8 500+
e The difference between the mean of the ol y
two distributions is 0.259 without margins 0.2

1 02 0.4 0.6 0.8
Score

while it reaches 0.278 with margins.

Figure 4. Positive (light blue) and negative (red) trials scores distribution
obtained after training with SNT-Xent and SNT-Xent-AM (m = 0.4) losses
The mean of each distribution is represented by a vertical dashed line.

=> Our method successfully separate positive from negative scores even further
which is consistent with the improvement of the EER.
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Final self-supervised results

Method EER(%) minDCF
AP+AAT [21] 8.65 —
SimCLR [10] 8.28 0.6100
MoCo [9] 8.23 0.5900
SNT-Xent 7.56 0.5785
SNT-Xent-AM (m = 0.4) 7.50 0.5804
SNT-Xent-AAM (m = 0.01) 7.56 0.6281

Table 3. Comparison of self-supervised contrastive
methods for speaker verification.

Training for more epochs and using a larger

encoder, we reach 7.50% EER with SNT-Xent-AM.

Our method outperforms other works based on
contrastive learning for self-supervised speaker
verification while using a smaller training set
(VoxCeleb1).

=> There is still considerable potential for improving self-supervised
contrastive methods for speaker verification.

[9] W. Xia, C. Zhang, C. Weng, M. Yu, and D. Yu, “Self-supervised Text-independent Speaker Verification using Prototypical Momentum Contrastive Learning,” in ICASSP, 2021.
[10] H. Zhang, Y. Zou, and H. Wang, “Contrastive Self-Supervised Learning for Text-Independent Speaker Verification,” in ICASSP, 2021.
[21] J. Huh, H. S. Heo, J. Kang, S. Watanabe, and J. S. Chung, “Augmentation adversarial training for unsupervised speaker recognition,” in Workshop on Self-Supervised

Learning for Speech and Audio Processing, NeurlPS, 2020.
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Additional results on VoxCeleb2

Method Symmetric  Scale (1/7) Margin EER (%) minDCF
AP-AAT [1] b 4 learnable learnable 9.64 0.6598
NT-Xent X 30 0 8.98 0.6714
v 30 0 8.41 0.6235
SNT-Xent-AM v 30 0.1 7.85 0.6168
v 30 0.2 8.13 0.6211

-> The effect of our improvements is more significant when training on a larger corpus (VoxCeleb2).

-> We achieve a 18.6% relative reduction of the baseline [1] EER.

[1] J. Huh, H. S. Heo, J. Kang, S. Watanabe, and J. S. Chung, “Augmentation adversarial training for unsupervised speaker recognition,” in Workshop on Self-Supervised
Learning for Speech and Audio Processing, NeurlPS, 2020.
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Conclusions

->  Self-supervised contrastive frameworks can be further improved, notably with optimizations
tailored for the downstream task.
® Self-supervision. Providing additional positive and negative pairs results in a lower EER.
€ Speaker verification. Introducing margins in the contrastive loss function leads to a better
speaker separability.

=>  Our improvements combined with a larger encoder model achieves 7.50% EER on VoxCeleb1

test set which is competitive with other equivalent approaches trained on VoxCeleb2.

- Early experiments on VoxCeleb2 are showing very promising results!
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