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Objective: Learn embeddings that have small intra-speaker and large inter-speaker distances.

State-of-the-art methods are based on deep learning models [1, 2], inherently dependent on some kind of 
human supervision, as they are trained on massive amounts of labeled data.

Learning embeddings for speaker verification
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Figure 1. Overview of the use of speaker embeddings for speaker verification systems.
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Motivation behind self-supervised learning

Large human-labeled datasets are important for the development of deep learning as the capacity of 
recent models is constantly increasing.

Drawbacks of supervised learning:

1. Labeling datasets is expensive, tedious and slow.
2. Manual labeling is not scalable to the amount of data available today.
3. It could lead to biased models towards the considered problem.

➔ Supervised learning is a bottleneck for building intelligent speaker verification systems.
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Contrastive learning and limitations of existing approaches

Contrastive learning [1, 2] learn embeddings directly from raw audio by assuming that each utterance in 
the mini-batch                  , and its augmented copy                   , belongs to a unique speaker.

Problem: They rely on a costly negative sampling process to avoid a collapse (non-informative 
embeddings). Alternative methods rely on complex architectures such as:

❏ a ”momentum” encoder (MoCo [3]);
❏ a stop gradient operation (SimSiam [4]);
❏ vector quantization (SwAV [5]);
❏ clustering (DeepCluster [6]).
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Maximizing information with Variance-Invariance-Covariance Regularization [1]

● Variance

Objective: Enforce the variance to reach 1 along the      dimensions.

Intuition: Avoid the collapse problem.

6[1] A. Bardes, J. Ponce, and Y. LeCun, “VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning,” arXiv preprint arXiv:2105.04906, 2021.



● Invariance

Objective: Reduce the     distance between two augmented copies.

Intuition: Learn channel invariant representations.

7[1] A. Bardes, J. Ponce, and Y. LeCun, “VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning,” arXiv preprint arXiv:2105.04906, 2021.

Maximizing information with Variance-Invariance-Covariance Regularization [1]



Maximizing information with Variance-Invariance-Covariance Regularization [1]

● Covariance

Objective: Make the off-diagonal coefficients of the covariance matrix to be close to 0.

Intuition: Spread information across the dimensions.

8[1] A. Bardes, J. Ponce, and Y. LeCun, “VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning,” arXiv preprint arXiv:2105.04906, 2021.



Overview of our self-supervised training framework (1)
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● X and X’ are input batches (composed of different non-overlapping frames from the same utterances)
● Y and Y’ are referred to as representations (used for speaker verification)
● Z and Z’ are referred to as embeddings (only used during training)

Figure 2. Overview of our self-supervised training framework.



Overview of our self-supervised training framework (2)

10

1. Self-supervised pre-training (100% samples - 0% labels)

2. Evaluation on speaker verification (2 utterances without labels)

Figure 3. Overview of the forward pass of the training and evaluation steps.



Combining contrastive learning and information maximization

Optimize the model jointly with the two objective functions by:

● Using both losses at different stages of the neural network;

● Using information maximization as a regularization term.
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Experimental setup

● Datasets and feature extraction
○ VoxCeleb1 dev and test sets
○ Speaker labels are discarded
○ 2 seconds audio chunks
○ 40-dimensional log-mel spectrogram input 

features

● Data augmentation
○ Music, speech and babble background noises 

from the MUSAN corpus
○ Reverberation from the Simulated Room 

Impulse Response Database
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● Model architecture and training
○ Encoder: Thin-ResNet34
○ Projector: 3-layer MLP
○ 500 epochs with Adam optimizer
○ Batch size of 256
○ 2x NVIDIA Titan X (Pascal) 12 GB

● Evaluation protocol
○ Scoring with cosine similarity
○ Equal Error Rate (EER)
○ minimum Detection Cost Function 

(minDCF) with p=0.01



The role of variance, invariance and covariance coupled with data augmentation

● Convergence is determined by the weight of the 
variance (μ) component relatively to the other terms.

● Invariance (λ) is fundamental to learn representations 
that have small intra-speaker distances.

Data augmentation is the key to achieve this objective 
as applying multiple transformations leads to a 62.7% 
relative improvement of the EER.

● Covariance (ν) is also necessary to produce 
meaningful representations (53.6% improvement of the 
EER between the 1st and 3rd configuration).
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Table 1. SV results with different scaling 
factors for VICReg loss components.     λ: 
Invariance, μ: Variance, ν: Covariance.

Table 2. SV results with different data 
augmentation strategies.



Self-supervised results

● Our method, VICReg, achieves 9.25% EER and 
outperforms the contrastive baseline, InfoNCE, 
and the other unsupervised approaches.

● We reach the best performance with            
objective function as it achieves 8.47% EER.

➔ Combining information maximization and 
contrastive learning at different stages               
of the model is very effective.
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Table 3. Final results on SV (VoxCeleb1 test).



Label-efficient evaluation

Use a limited amount of annotated 
utterances to improve the performance 
of our method:

1. Train a linear classifier on top of 
the frozen self-supervised 
representations;

2. Fine-tune the whole pre-trained 
neural network.
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➔ Fine-tuning with only 2% of labeled data is sufficient to outperform the supervised baseline.

Figure 4. SV results with different percentage of labeled data used during training.



Conclusions

➔ Information maximization methods allow learning robust speaker representations 
without contrastive samples.

➔ Our self-supervised training framework can reach better results when combining 
contrastive learning and information maximization.

➔ Our method outperforms its supervised counterpart when fine-tuned with only 2% of 
labeled utterances, which is a step toward label-efficient speaker verification systems.
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