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Objective: Learn embeddings that have small intra-speaker and large inter-speaker distances.

State-of-the-art methods are based on deep learning models [1, 2], inherently dependent on some kind of 
human supervision, as they are trained on massive amounts of labeled data.

Learning embeddings for speaker verification
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Figure 1. Learning speaker embeddings space for speaker verification systems.

[1] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudan- pur, “X-Vectors: Robust DNN Embeddings for Speaker Recognition,” in ICASSP, 2018.
[2] J. S. Chung, J. Huh, and S. Mun, “Delving into VoxCeleb: Environment Invariant Speaker Recognition,” in Odyssey, 2020.



Self-supervised learning with a contrastive loss

Large human-labeled datasets are important for the development of deep learning as the capacity of 
recent models is constantly increasing.

→ However, labeling datasets is expensive, tedious, slow and not scalable to the data available online.
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Self-supervised contrastive learning [1, 2, 3] learn embeddings directly from raw audio by assuming 
that each utterance in the mini-batch                  , and its augmented copy                   , belongs to a 
unique speaker.

[1] A. van den Oord, Y. Li, and O. Vinyals, “Representation Learning with Contrastive Predictive Coding,” arXiv preprint arXiv:1807.03748, 2019.
[2] H. Zhang, Y. Zou, and H. Wang, “Contrastive Self-Supervised Learning for Text-Independent Speaker Verification,” in ICASSP, 2021.
[3] W. Xia, C. Zhang, C. Weng, M. Yu, and D. Yu, “Self-supervised Text-independent Speaker Verification using Prototypical Momentum Contrastive Learning,” in ICASSP, 2021.



In supervised settings, margins have been successfully applied to the Softmax classification loss for face 
and speaker recognition [1, 2] with the aim of producing more discriminative embeddings.

Margin-based approaches for verification tasks
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[1] Y. Liu, L. He, and J. Liu, “Large Margin Softmax Loss for Speaker Verification,” in Interspeech, 2019.
[2] Y.-Q. Yu, L. Fan, and W.-J. Li, “Ensemble additive margin softmax for speaker verification,” in ICASSP, 2019.
[3] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj and L. Song, “SphereFace: Deep Hypersphere Embedding for Face Recognition,” in CVPR, 2017.
[4] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and W. Liu, “Cosface: Large margin cosine loss for deep face recognition,” in CVPR, 2018.
[5] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular margin loss for deep face recognition,” in CVPR, 2019.

Figure 2. Overview of the different margin-based loss functions. Decision margins are from Figure 5 of [5].

A-Softmax
SphereFace [3]

AM-Softmax
CosFace [4]

AAM-Softmax
ArcFace [5]



Symmetric contrastive loss formulation

6[1] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A Simple Framework for Contrastive Learning of Visual Representations,” in ICML, 2020.

Symmetric NT-Xent loss (SNT-Xent) [1]

→ 2N positive pairs have 2(N − 1) negatives

Normalized Temperature-scaled Cross Entropy loss (NT-Xent)
→ N positive pairs have N − 1 negatives

is the index of augmented version  of



Additive Margin (CosFace) [1]

● Introduce             in cosine space to force the cosine similarity of positive pairs to be above 
a specific threshold and thus improve speaker separability.

●
● Decision boundary:

7[1] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and W. Liu, “Cosface: Large margin cosine loss for deep face recognition,” in CVPR, 2018.

Introducing Additive Margins in the contrastive loss



Introducing Additive Angular Margins in the contrastive loss

8[1] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular margin loss for deep face recognition,” in CVPR, 2019.

Additive Angular Margin (ArcFace) [1]

● Introduce             in angle space which provides the exact correspondence to the geodesic 
distance.

●
● Decision boundary:



Overview of our self-supervised training framework
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Figure 3. Overview of our self-supervised training framework.



Experimental setup

● Datasets and feature extraction
○ Training on VoxCeleb1 dev set [1]
○ Evaluation on VoxCeleb1 test set
○ Speaker labels are discarded
○ 2 seconds audio chunks
○ 40-dimensional log-mel spectrogram input 

features
○
○

● Data augmentation
○ Music, speech and babble background 

noises from the MUSAN [2]
○ Reverberation from the Simulated Room 

Impulse Response Database [3]
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● Model architecture and training
○ Encoder: Thin-ResNet34 / ResNet34
○ Projector: 2-layer MLP
○ By default     is set to 0.2
○ Epochs: 200 / 300
○ Optimizer: Adam (no weight decay)
○ Batch size: 256
○ 2x NVIDIA Titan X (Pascal) 12 GB
○

● Evaluation protocol
○ Scoring with cosine similarity
○ Equal Error Rate (EER)
○ minimum Detection Cost Function 

(minDCF) with p=0.01

[1] A. Nagrani, J. S. Chung, and A. Zisserman, “VoxCeleb: A Large-Scale Speaker Identification Dataset,” in Interspeech, 2017.
[2] D. Snyder, G. Chen, and D. Povey, “MUSAN: A Music, Speech, and Noise Corpus,” arXiv preprint arXiv:1510.08484, 2015.
[3] T. Ko, V. Peddinti, D. Povey, M. L. Seltzer, and S. Khudanpur, “A study on data augmentation of reverberant speech for robust speech recognition,” in ICASSP, 2017.



Effect of the symmetric loss and the margins

● Using a symmetric contrastive loss improves the EER 
from 9.45% to 9.35%.

●
● Choosing the right margin factor is fundamental: 

trade-off between discriminative power and learning 
task complexity. Learning the margin value jointly with 
the model does not improve the performance.

●
● The best result is obtained with SNT-Xent-AAM which 

achieves 8.98% EER.
●
● The improvement does not translate on the minDCF as 

the model is trained to reduce the number of false 
positives and false negatives indistinctly.
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Table 2. SV results when introducing margins in 
the self-supervised contrastive loss.

Table 1. The effect of training components on 
SV results.



Study of the distribution of positive and negative scores

● The spread between the distribution of 
positive and negative scores is further 
when using SNT-Xent-AM (m=0.4).

● The difference between the mean of the 
two distributions is 0.259 without margins 
while it reaches 0.278 with margins.
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Figure 4. Positive (light blue) and negative (red) trials scores distribution 
obtained after training with SNT-Xent and SNT-Xent-AM (m = 0.4) losses.
The mean of each distribution is represented by a vertical dashed line.

➔ Our method successfully separate positive from negative scores even further 
which is consistent with the improvement of the EER.



Final self-supervised results

● Training for more epochs and using a larger 
encoder, we reach 7.50% EER with SNT-Xent-AM.

● Our method outperforms other works based on 
contrastive learning for self-supervised speaker 
verification while using a smaller training set 
(VoxCeleb1).
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Table 3. Comparison of self-supervised contrastive 
methods for speaker verification.

[9] W. Xia, C. Zhang, C. Weng, M. Yu, and D. Yu, “Self-supervised Text-independent Speaker Verification using Prototypical Momentum Contrastive Learning,” in ICASSP, 2021.
[10] H. Zhang, Y. Zou, and H. Wang, “Contrastive Self-Supervised Learning for Text-Independent Speaker Verification,” in ICASSP, 2021.
[21] J. Huh, H. S. Heo, J. Kang, S. Watanabe, and J. S. Chung, “Augmentation adversarial training for unsupervised speaker recognition,” in Workshop on Self-Supervised 
Learning for Speech and Audio Processing, NeurIPS, 2020.

➔ There is still considerable potential for improving self-supervised 
contrastive methods for speaker verification.



Method Symmetric Scale (      ) Margin EER (%) minDCF

AP-AAT [1] ✘ learnable learnable 9.64 0.6598

NT-Xent ✘ 30 0 8.98 0.6714

SNT-Xent-AM

✔ 30 0 8.41 0.6235

✔ 30 0.1 7.85 0.6168

✔ 30 0.2 8.13 0.6211

Additional results on VoxCeleb2
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[1] J. Huh, H. S. Heo, J. Kang, S. Watanabe, and J. S. Chung, “Augmentation adversarial training for unsupervised speaker recognition,” in Workshop on Self-Supervised 
Learning for Speech and Audio Processing, NeurIPS, 2020.

➔ The effect of our improvements is more significant when training on a larger corpus (VoxCeleb2).
➔

➔ We achieve a 18.6% relative reduction of the baseline [1] EER.



Conclusions

➔ Self-supervised contrastive frameworks can be further improved, notably with optimizations 

tailored for the downstream task.

◆ Self-supervision. Providing additional positive and negative pairs results in a lower EER.

◆ Speaker verification. Introducing margins in the contrastive loss function leads to a better 

speaker separability.

➔ Our improvements combined with a larger encoder model achieves 7.50% EER on VoxCeleb1 

test set which is competitive with other equivalent approaches trained on VoxCeleb2.

➔ Early experiments on VoxCeleb2 are showing very promising results!
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