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State-of-the-art Speaker Verification (SV) methods compute the similarity between 
two speaker representations extracted from Deep Neural Networks (DNN) 
pre-trained on speaker classification [1, 2].

Learning representations for speaker verification
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Figure 1. Learning speaker embeddings space for 
speaker verification systems.

[1] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudan- pur, “X-Vectors: Robust DNN Embeddings for Speaker Recognition,” in ICASSP, 2018.
[2] J. S. Chung, J. Huh, and S. Mun, “Delving into VoxCeleb: Environment Invariant Speaker Recognition,” in Odyssey, 2020.

Speaker representations should:

● maximize inter-speaker distances ;
● minimize intra-speaker variance ;
● discard extrinsic variabilities (e.g. channel, 

noise, environment, …).



Self-supervised contrastive learning

Deep Learning models are inherently dependent on some kind of human supervision as they are 
trained on large human-labeled datasets → complex and expensive process for speech-related tasks.

4

Self-supervised contrastive learning [1, 2, 3] learn embeddings directly from raw audio by assuming that 
two utterances randomly sampled from the training data belong to different speakers.

[1] A. van den Oord, Y. Li, and O. Vinyals, “Representation Learning with Contrastive Predictive Coding,” arXiv preprint arXiv:1807.03748, 2019.
[2] H. Zhang, Y. Zou, and H. Wang, “Contrastive Self-Supervised Learning for Text-Independent Speaker Verification,” in ICASSP, 2021.
[3] W. Xia, C. Zhang, C. Weng, M. Yu, and D. Yu, “Self-supervised Text-independent Speaker Verification using Prototypical Momentum Contrastive Learning,” in ICASSP, 2021.

From a given training sample (anchor):

❏ the positive is created by applying 
data-augmentation on the anchor ;

❏ the negative is randomly sampled from 
the mini-batch or a memory queue.



In supervised settings, margins have been successfully applied to the Softmax classification loss for face 
and speaker recognition [1, 2] with the aim of producing more discriminative embeddings.

Margin-based approaches for verification tasks
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[1] Y. Liu, L. He, and J. Liu, “Large Margin Softmax Loss for Speaker Verification,” in Interspeech, 2019.
[2] Y.-Q. Yu, L. Fan, and W.-J. Li, “Ensemble additive margin softmax for speaker verification,” in ICASSP, 2019.
[3] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj and L. Song, “SphereFace: Deep Hypersphere Embedding for Face Recognition,” in CVPR, 2017.
[4] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and W. Liu, “Cosface: Large margin cosine loss for deep face recognition,” in CVPR, 2018.
[5] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular margin loss for deep face recognition,” in CVPR, 2019.

Figure 2. Overview of the different margin-based loss functions. Decision margins are from Figure 5 of [5].
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Overview of our self-supervised training framework
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[1] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A Simple Framework for Contrastive Learning of Visual Representations,” in ICML, 2020.
[2] K. He, H. Fan, Y. Wu, S. Xie, R. Girschick, “Momentum Contrast for Unsupervised Visual Representation Learning,” in CVPR, 2020.

Figure 3. Diagram of our contrastive self-supervised training framework to learn speaker representations.

SimCLR [1] MoCo [2]



Revision of SimCLR contrastive objective function

7[1] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A Simple Framework for Contrastive Learning of Visual Representations,” in ICML, 2020.

is the index of the positive

SimCLR [1] framework samples negatives from the current mini-batch.

➔ Adopt the symmetric formulation of the NT-Xent loss to provide more supervision.
◆ NT-Xent: N positive pairs with N−1 negatives
◆ Symmetric NT-Xent: 2N positive pairs with 2(N-1) negatives

➔

➔ Compute the similarity of positive and negative pairs differently to introduce additive margin.



Revision of MoCo contrastive objective function

8[1] K. He, H. Fan, Y. Wu, S. Xie, R. Girschick, “Momentum Contrast for Unsupervised Visual Representation Learning,” in CVPR, 2020.

is the i-th element of the queue

MoCo [1] framework samples negatives from a memory queue of previous embeddings.

➔ Using a large queue of negatives alleviate the need of a symmetric loss.
➔

➔ Compute the similarity of positive and negative pairs differently to introduce additive margin.



➔ This creates a stringent constraint as the positive similarity has to be at least greater than the 
maximal negative similarity plus the margin constant:                                              .

Inspired by Additive Margin (CosFace) [1], we introduce             in cosine space to force the cosine 
similarity of positive pairs to be above a specific threshold and thus improve speaker separability.

9[1] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and W. Liu, “Cosface: Large margin cosine loss for deep face recognition,” in CVPR, 2018.

Introduction of Additive Margin in the contrastive loss

The contrastive loss aims to penalize classification errors instead of producing discriminative 
representations relevant to the context of speaker verification.



Experimental setup

● Datasets and feature extraction
○ Training on VoxCeleb2 dev set [1]
○ Evaluation on VoxCeleb1 ‘original’ test set
○ Speaker labels are discarded
○ 2 seconds audio chunks
○ 40-dimensional log-mel spectrogram input 

features
○
○

● Data augmentation
○ Music, speech and babble background 

noises from the MUSAN [2]
○ Reverberation from the Simulated Room 

Impulse Response Database [3]
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● Model architecture and training
○ Encoder: Fast ResNet-34 [4]
○ Projector: none
○ By default     is set to 1/30 ≈ 0.0333
○ Epochs: 150
○ Optimizer: Adam (no weight decay)
○ Batch size: 200
○ 2x NVIDIA Tesla V100 16 GB
○

● Evaluation protocol
○ Scoring with cosine similarity
○ Equal Error Rate (EER)
○ minimum Detection Cost Function 

(minDCF) with p=0.01

[1] J. S. Chung, A. Nagrani, and A. Zisserman, “VoxCeleb2: Deep Speaker Recognition,” in Interspeech, 2018.
[2] D. Snyder, G. Chen, and D. Povey, “MUSAN: A Music, Speech, and Noise Corpus,” arXiv preprint arXiv:1510.08484, 2015.
[3] T. Ko, V. Peddinti, D. Povey, M. L. Seltzer, and S. Khudanpur, “A study on data augmentation of reverberant speech for robust speech recognition,” in ICASSP, 2017.
[4] J.S. Chung, J. Huh, S. Mun, M. Lee, H.S. Heo, S. Chloe, C. Ham, S.W. Jung, B.J. Lee, and I. Han, “In Defence of Metric Learning for Speaker Recognition”, in Interspeech, 2020.



Effect of our improvements to the self-supervised contrastive loss

● Using a symmetric loss for SimCLR and additive 
margin for both frameworks improve downstream 
performance.

● The best result is obtained with SimCLR (m=0.1) 
which achieves 7.85% EER.

This margin value corresponds to the value often 
used for AM-Softmax supervised training.

● Choosing the right margin factor is fundamental: 
trade-off between discriminative capacity and 
learning task complexity.
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Table 2. The effect of additive margin on MoCo 
self-supervised training performance on SV.

Table 1. The effect of the symmetric contrastive loss 
and additive margin on SimCLR self-supervised 
training performance on SV.



Impact of class collisions from the SSL training
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Figure 5. Positive (green) and negative (red) trials scores 
distribution obtained after training with and without additive 
margin. SNT-Xent-AM (m = 0.1) losses. The mean of each 
distribution is represented by a vertical dashed line.

Table 3. The impact of class collisions and class 
imbalance, which stems from SSL, on SV results.

➔ Removing class collisions does not result in better 
downstream performance. The probability of class 
collisions is too small as VoxCeleb2 contains many 
speakers compared to the batch size.

➔ Our method successfully separate positive 
from negative scores even further which is 
consistent with the improvement of the 
Equal Error Rate.



Comparison to other self-supervised contrastive methods for SV
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Table 4. Final results of different self-supervised 
contrastive methods on speaker verification.

[10] W. Xia, C. Zhang, C. Weng, M. Yu, and D. Yu, “Self-supervised Text-independent Speaker Verification using Prototypical Momentum Contrastive Learning,” in ICASSP, 2021.
[11] H. Zhang, Y. Zou, and H. Wang, “Contrastive Self-Supervised Learning for Text-Independent Speaker Verification,” in ICASSP, 2021.
[21] J. Huh, H. S. Heo, J. Kang, S. Watanabe, and J. S. Chung, “Augmentation adversarial training for unsupervised speaker recognition,” in Workshop on Self-Supervised 
Learning for Speech and Audio Processing, NeurIPS, 2020.

➔ We outperform other self-supervised 
contrastive methods based on objective 
functions equivalent to NT-Xent / Angular 
Prototypical (without margins).

➔ Self-supervised contrastive frameworks can be further improved with optimizations tailored for 

the training setup (additional positive and negative pairs) and the downstream task (margins).



Conclusions

● Our method achieves 7.85% EER on VoxCeleb1-O test set which is competitive with other 

equivalent approaches and shows that margins improve the discriminative capacity of 

representations learned with SSL even with the existence of class collisions.

● Perspectives: 
○ Reduce the overfitting on channel characteristics caused by the same-utterance positive 

sampling → margins would be more effective

○ Experiment with other margin-based loss functions

○ Assess the effectiveness on other tasks and modalities (CV, LID, …)
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