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Speaker Verification (SV)

Objective: Compute similarity between two speaker representations extracted from pre-trained model
on speaker classification [1, 2]

Learn speaker discriminative representations that:

e minimize intra-speaker distance
e maximize inter-speaker distance
e discard non-speaker information (noise, channel, ...)
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Figure 1. Learning speaker embeddings space for speaker
verification systems.
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Self-Supervised Learning for SV

Mask Prediction Loss
e Why self-supervised learning ? 7

o labeled data is scarce and expensive S [Zl;g %] %]
o leverage abundance of unlabeled data / \

. . . . Transformer Encoder with
o learning meaningful representations directly from the data iR D T

e SSL methods for SV +ﬁ B s +

o Contrastive — SIimCLR [4]
o Knowledge distillation — DINO [5] CNN Encoders '

Utterance
Mixing audio WMW
e Emergence of SSL in Automatic Speech Recognition (ASR)
o wav2vec [1], HUBERT [2] Figure 2. WavLM model architecture [3]
o WavLM [3] — Masked speech denoising and prediction
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Learning speaker representations from ASR models

e Progressive abstraction of speaker information across Transformer layers

e Extracting information during training
o Weighted sum of hidden states with learned weights
o Multi-Head Factorized Attention (MHFA)
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Figure 3. From [1]: Weight analysis per layer when fine-tuning for different tasks of the SUPERB Benchmark
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Method — Overview
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° Clustering training samples ° Supervised training on ° Audio samples duration
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° 2 iterations ° Margins
o 0.2—-0.5

° 2 epochs



Method — DINO-based SSL for SV

lterative (x2)
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e Self-distillation using DINO [1] framework

e Minimize CE between teacher and student distributions

e Avoid collapse
o sharpening
o centering
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Method - Fine-tuning by leveraging pseudo-labels

lterative (x2)

Self-Supervised >{ Pseudo-Labels R WavLM MHFA > Large Margin (
DINO Training Creation Fine-Tuning Fine-Tuning
Speaker Embeddings
e What are pseudo-labels ? y
e N\
o Label inferred from data using a pre-trained model k-means
(50,000
. J
e Clustering training samples embeddings v
o  k-means (50,000 clusters) e
o  AHC (7,500 clusters) | ey
e lterative refining of pseudo-labels l
Pseudo-labels
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Method — WavLM-based speaker recognition

»
£
3
2
s
Iterative (x2) I
------------------ g
. T s
Step 1 Step 2 é ) Step 3 E Step 4 ;’-’.
\ 2
Self-Supervised Pseudo-Labels WavLM MHFA FrgeiMarginis @@l e b
4>{ JEE— N 4 5 4 .
DINO Training Creation Fine-Tuning Fine-Tuning
) Y ) | |

MHFA

e Multi-Head Factorized Attention (MHFA) [1] |
o Light-weight layer-wise attentive pooling I S
o Efficiently capture valuable information from i »
intermediate representations
e Dynamic Loss Gate + Label Correction (DLG-LC) [2] M s E
o Dealing with unreliable pseudo-labels E
Wy L

o 2

[1] J. Peng, O. PIchot, T. Stafylakis, L. Mosner, L. Burget, and J. Cernocky, “An Attention-Based Backend Allowing Efficient ‘Fine-Tuning of Transformer Models for Speaker Verification,” in IEEE SLT, 2022
[2] H. Bing, C. Zhengyang, and Q. Yanmin, “Self-Supervised Speaker Verification Using Dynamic Loss-Gate and Label Correction,” in Interspeech, 2022




MHFA Training Stabilization

e L2 reqgularization towards initial weights
o  WavLM over-parameterized for supervised dataset
o  Avoid over-fitting + stabilize fine-tuning
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e Layer-wise learning rate decay
o  Stabilize speaker information in early layers
o  Modify layers containing speech information
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Method - Fine-tuning by leveraging pseudo-labels

e How to handle incorrect pseudo-labels?

e Dynamic Loss-Gate (DLG) [1]
o Higher loss on unreliable samples
o Ignore unreliable samples

e Label Correction (LC) [1]
o Avoid discarding unreliable samples from training
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Experimental setup

e Datasets

O

o O O O

e DINO

O

O

Training on VoxCeleb2 dev set [1]
Evaluation on VoxCeleb1 test set
Speaker labels are discarded

2 seconds audio chunks (5s for LMFT)

Data augmentation
u Music, speech and babble background noises
from the MUSAN [2]
| Reverberation from the Simulated Room
Impulse Response Database [3]

Encoder: ECAPA-TDNN
Same training setup as [4]

e WavLM MHFA

o

O

o O O O

Pre-trained model: WavLM base+ [5]
Epochs: 15 (2 for LMFT)

Optimizer: AdamW

Batch size: 120

Loss: AAM Softmax (s=30, m=0.2)
2x RTX Quadro 8000

e Evaluation protocol

o

o

o

Scoring with cosine similarity
Equal Error Rate (EER)

Minimum Detection Cost Function
(minDCF) with p=0.01

[1]A. Nagrani, J. S. Chung, and A. Zisserman, “VoxCeleb: A Large-Scale Speaker Identification Dataset,” in Interspeech, 2017

[2] D. Snyder, G. Chen, and D. Povey, “MUSAN: A Music, Speech, and Noise Corpus,” arXiv preprint arXiv:1510.08484, 2015

[3] T. Ko, V. Peddinti, D. Povey, M. L. Seltzer, and S. Khudanpur, “A study on data augmentation of reverberant speech for robust speech recognition,” in ICASSP, 2017

[4] Y. Chen, S. Zheng, H. Wang, L. Cheng, and Q. Chen, “Pushing the limits of self-supervised speaker verification using regularized distillation framework,” in ICASSP, 2023
[5] https://github.com/microsoft/unilm/tree/master/wavim
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Results — Infeasibility of end-to-end self-supervised fine-tuning

Self-supervised training (NT-Xent loss) does not converge to an optimal solution

e Positive pairs are extracted from same utterances: they share channel and noise characteristics
e Model focuses on learning channel characteristics
e Sampling positive pairs from different utterances improves significantly the performance
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Figure 6. L2 distance between the pre-trained and fine-tuned

weights of the WavLM at different layers and epochs. 12



Results — Incremental study of the components of our framework

e Fine-tuning WavLM MHFA on DINO pseudo-labels — 52.5% relative EER reduction

Method EER (%) minDCF,,
e DLG+ILC DINO 3.16 0.2233
handl liabl do-label + WavLM MHFA 1.50 0.1378
o handling unreliable pseudo-labels L DLG | 27 0.1401
+LC 1.22 0.1531
+IC (iter 1) 1.17 0.1351
) . +IC (iter 2) 1.01 0.1399
e Pseudo I_abels refinement +IC (iter 3) 108 0.1340
o Adjusted Rand Index (ARI) : 0.81 — 0.90 + LMFT 0.99 0.0905

o Normalized Mutual Information (NMI): 0.95 — 0.98



Results — Evaluation of different self-supervised SV methods

e Achieving state-of-the-art performance on self-supervised speaker verification

e Closing the gap between supervised and self-supervised performance

; ; VoxCeleb1-O VoxCelebl1-E VoxCelebl-H

Method # of iterations
EER (%) minDCF(m] EER ( %) minDCF()_()] EER (% ) minDCFo_m

JHU [26] 4 1.89 - - - - =
DKU [35] 4 1.81 - - = - -
SNU [36] 4 1.66 - - - - -
LGL [30] 5 1.66 - 2.18 - 3.76 -
DLG-LC [25] 5 1.47 - 1.78 - 3.19 -
Ours 3 0.99 0.0905 1.21 0.1263 2.35 0.2214

Supervised - 0.94 0.1179 0.93 0.1066 1.94 0.1919




Conclusions

e Our method consists in fine-tuning a pre-trained ASR model with the MHFA
backend on pseudo-labels iteratively refined and initially extracted from a
DINO SSL-based framework

e We achieve 0.99% EER on VoxCeleb1-O, without using any speaker label,
and outperform current state-of-the-art methods

e This contribution is a step towards supervised performance with
self-supervised learning
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